3.2.20 \(\int \frac {x^2 (A+B x^2)}{(a+b x^2+c x^4)^2} \, dx\) [120]

3.2.20.1 Optimal result
3.2.20.2 Mathematica [A] (verified)
3.2.20.3 Rubi [A] (verified)
3.2.20.4 Maple [C] (verified)
3.2.20.5 Fricas [B] (verification not implemented)
3.2.20.6 Sympy [F(-1)]
3.2.20.7 Maxima [F]
3.2.20.8 Giac [B] (verification not implemented)
3.2.20.9 Mupad [B] (verification not implemented)

3.2.20.1 Optimal result

Integrand size = 25, antiderivative size = 276 \[ \int \frac {x^2 \left (A+B x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=-\frac {x \left (A b-2 a B-(b B-2 A c) x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\left (b B-2 A c-\frac {b^2 B-4 A b c+4 a B c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (b B-2 A c+\frac {b^2 B-4 A b c+4 a B c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right ) \sqrt {b+\sqrt {b^2-4 a c}}} \]

output
-1/2*x*(A*b-2*B*a-(-2*A*c+B*b)*x^2)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+1/4*arcta 
n(x*2^(1/2)*c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*(B*b-2*A*c+(4*A*b*c-4*B* 
a*c-B*b^2)/(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)*2^(1/2)/c^(1/2)/(b-(-4*a*c+b^2 
)^(1/2))^(1/2)+1/4*arctan(x*2^(1/2)*c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))* 
(B*b-2*A*c+(-4*A*b*c+4*B*a*c+B*b^2)/(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)*2^(1/ 
2)/c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)
 
3.2.20.2 Mathematica [A] (verified)

Time = 0.42 (sec) , antiderivative size = 298, normalized size of antiderivative = 1.08 \[ \int \frac {x^2 \left (A+B x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {1}{4} \left (\frac {2 x \left (B \left (2 a+b x^2\right )-A \left (b+2 c x^2\right )\right )}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {2} \left (-b^2 B+4 A b c-4 a B c+b B \sqrt {b^2-4 a c}-2 A c \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {2} \left (b^2 B-4 A b c+4 a B c+b B \sqrt {b^2-4 a c}-2 A c \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}\right ) \]

input
Integrate[(x^2*(A + B*x^2))/(a + b*x^2 + c*x^4)^2,x]
 
output
((2*x*(B*(2*a + b*x^2) - A*(b + 2*c*x^2)))/((b^2 - 4*a*c)*(a + b*x^2 + c*x 
^4)) + (Sqrt[2]*(-(b^2*B) + 4*A*b*c - 4*a*B*c + b*B*Sqrt[b^2 - 4*a*c] - 2* 
A*c*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a* 
c]]])/(Sqrt[c]*(b^2 - 4*a*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[2] 
*(b^2*B - 4*A*b*c + 4*a*B*c + b*B*Sqrt[b^2 - 4*a*c] - 2*A*c*Sqrt[b^2 - 4*a 
*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[c]*(b^ 
2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/4
 
3.2.20.3 Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 265, normalized size of antiderivative = 0.96, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {1598, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \left (A+B x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 1598

\(\displaystyle \frac {\int \frac {(b B-2 A c) x^2+A b-2 a B}{c x^4+b x^2+a}dx}{2 \left (b^2-4 a c\right )}-\frac {x \left (-2 a B-\left (x^2 (b B-2 A c)\right )+A b\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {\frac {1}{2} \left (-\frac {4 a B c-4 A b c+b^2 B}{\sqrt {b^2-4 a c}}-2 A c+b B\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}dx+\frac {1}{2} \left (\frac {4 a B c-4 A b c+b^2 B}{\sqrt {b^2-4 a c}}-2 A c+b B\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}dx}{2 \left (b^2-4 a c\right )}-\frac {x \left (-2 a B-\left (x^2 (b B-2 A c)\right )+A b\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\left (-\frac {4 a B c-4 A b c+b^2 B}{\sqrt {b^2-4 a c}}-2 A c+b B\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (\frac {4 a B c-4 A b c+b^2 B}{\sqrt {b^2-4 a c}}-2 A c+b B\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} \sqrt {c} \sqrt {\sqrt {b^2-4 a c}+b}}}{2 \left (b^2-4 a c\right )}-\frac {x \left (-2 a B-\left (x^2 (b B-2 A c)\right )+A b\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\)

input
Int[(x^2*(A + B*x^2))/(a + b*x^2 + c*x^4)^2,x]
 
output
-1/2*(x*(A*b - 2*a*B - (b*B - 2*A*c)*x^2))/((b^2 - 4*a*c)*(a + b*x^2 + c*x 
^4)) + (((b*B - 2*A*c - (b^2*B - 4*A*b*c + 4*a*B*c)/Sqrt[b^2 - 4*a*c])*Arc 
Tan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqr 
t[b - Sqrt[b^2 - 4*a*c]]) + ((b*B - 2*A*c + (b^2*B - 4*A*b*c + 4*a*B*c)/Sq 
rt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/ 
(Sqrt[2]*Sqrt[c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(2*(b^2 - 4*a*c))
 

3.2.20.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1598
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*( 
x_)^4)^(p_.), x_Symbol] :> Simp[f*(f*x)^(m - 1)*(a + b*x^2 + c*x^4)^(p + 1) 
*((b*d - 2*a*e - (b*e - 2*c*d)*x^2)/(2*(p + 1)*(b^2 - 4*a*c))), x] - Simp[f 
^2/(2*(p + 1)*(b^2 - 4*a*c))   Int[(f*x)^(m - 2)*(a + b*x^2 + c*x^4)^(p + 1 
)*Simp[(m - 1)*(b*d - 2*a*e) - (4*p + 4 + m + 1)*(b*e - 2*c*d)*x^2, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && 
 GtQ[m, 1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
 
3.2.20.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.11 (sec) , antiderivative size = 152, normalized size of antiderivative = 0.55

method result size
risch \(\frac {\frac {\left (2 A c -B b \right ) x^{3}}{8 a c -2 b^{2}}+\frac {\left (A b -2 B a \right ) x}{8 a c -2 b^{2}}}{c \,x^{4}+b \,x^{2}+a}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (\frac {\left (2 A c -B b \right ) \textit {\_R}^{2}}{4 a c -b^{2}}-\frac {A b -2 B a}{4 a c -b^{2}}\right ) \ln \left (x -\textit {\_R} \right )}{2 c \,\textit {\_R}^{3}+\textit {\_R} b}\right )}{4}\) \(152\)
default \(\frac {\frac {\left (2 A c -B b \right ) x^{3}}{8 a c -2 b^{2}}+\frac {\left (A b -2 B a \right ) x}{8 a c -2 b^{2}}}{c \,x^{4}+b \,x^{2}+a}+\frac {2 c \left (\frac {\left (2 A c \sqrt {-4 a c +b^{2}}+4 A b c -B b \sqrt {-4 a c +b^{2}}-4 B a c -B \,b^{2}\right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{8 c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}-\frac {\left (2 A c \sqrt {-4 a c +b^{2}}-4 A b c -B b \sqrt {-4 a c +b^{2}}+4 B a c +B \,b^{2}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{8 c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{4 a c -b^{2}}\) \(290\)

input
int(x^2*(B*x^2+A)/(c*x^4+b*x^2+a)^2,x,method=_RETURNVERBOSE)
 
output
(1/2*(2*A*c-B*b)/(4*a*c-b^2)*x^3+1/2*(A*b-2*B*a)/(4*a*c-b^2)*x)/(c*x^4+b*x 
^2+a)+1/4*sum(((2*A*c-B*b)/(4*a*c-b^2)*_R^2-(A*b-2*B*a)/(4*a*c-b^2))/(2*_R 
^3*c+_R*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a))
 
3.2.20.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3467 vs. \(2 (234) = 468\).

Time = 1.16 (sec) , antiderivative size = 3467, normalized size of antiderivative = 12.56 \[ \int \frac {x^2 \left (A+B x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

input
integrate(x^2*(B*x^2+A)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")
 
output
1/4*(2*(B*b - 2*A*c)*x^3 - sqrt(1/2)*((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^ 
2*c + (b^3 - 4*a*b*c)*x^2)*sqrt(-(B^2*a*b^3 - 4*(4*A*B*a^2 - 3*A^2*a*b)*c^ 
2 + (12*B^2*a^2*b - 12*A*B*a*b^2 + A^2*b^3)*c + (a*b^6*c - 12*a^2*b^4*c^2 
+ 48*a^3*b^2*c^3 - 64*a^4*c^4)*sqrt((B^4*a^2 - 2*A^2*B^2*a*c + A^4*c^2)/(a 
^2*b^6*c^2 - 12*a^3*b^4*c^3 + 48*a^4*b^2*c^4 - 64*a^5*c^5)))/(a*b^6*c - 12 
*a^2*b^4*c^2 + 48*a^3*b^2*c^3 - 64*a^4*c^4))*log(-(3*B^4*a^2*b^2 - A*B^3*a 
*b^3 - 4*A^4*a*c^3 + 3*(4*A^3*B*a*b - A^4*b^2)*c^2 + (4*B^4*a^3 - 12*A*B^3 
*a^2*b + A^3*B*b^3)*c)*x + 1/2*sqrt(1/2)*(2*B^3*a^2*b^4 - A*B^2*a*b^5 - 16 
*(2*A^2*B*a^3 - A^3*a^2*b)*c^3 + 8*(4*B^3*a^4 - 2*A*B^2*a^3*b + 2*A^2*B*a^ 
2*b^2 - A^3*a*b^3)*c^2 - (16*B^3*a^3*b^2 - 8*A*B^2*a^2*b^3 + 2*A^2*B*a*b^4 
 - A^3*b^5)*c + (192*B*a^4*b^3*c^3 + 256*A*a^5*c^5 - 128*(2*B*a^5*b + A*a^ 
4*b^2)*c^4 - 8*(6*B*a^3*b^5 - A*a^2*b^6)*c^2 + (4*B*a^2*b^7 - A*a*b^8)*c)* 
sqrt((B^4*a^2 - 2*A^2*B^2*a*c + A^4*c^2)/(a^2*b^6*c^2 - 12*a^3*b^4*c^3 + 4 
8*a^4*b^2*c^4 - 64*a^5*c^5)))*sqrt(-(B^2*a*b^3 - 4*(4*A*B*a^2 - 3*A^2*a*b) 
*c^2 + (12*B^2*a^2*b - 12*A*B*a*b^2 + A^2*b^3)*c + (a*b^6*c - 12*a^2*b^4*c 
^2 + 48*a^3*b^2*c^3 - 64*a^4*c^4)*sqrt((B^4*a^2 - 2*A^2*B^2*a*c + A^4*c^2) 
/(a^2*b^6*c^2 - 12*a^3*b^4*c^3 + 48*a^4*b^2*c^4 - 64*a^5*c^5)))/(a*b^6*c - 
 12*a^2*b^4*c^2 + 48*a^3*b^2*c^3 - 64*a^4*c^4))) + sqrt(1/2)*((b^2*c - 4*a 
*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)*sqrt(-(B^2*a*b^3 - 4*(4 
*A*B*a^2 - 3*A^2*a*b)*c^2 + (12*B^2*a^2*b - 12*A*B*a*b^2 + A^2*b^3)*c +...
 
3.2.20.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^2 \left (A+B x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Timed out} \]

input
integrate(x**2*(B*x**2+A)/(c*x**4+b*x**2+a)**2,x)
 
output
Timed out
 
3.2.20.7 Maxima [F]

\[ \int \frac {x^2 \left (A+B x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {{\left (B x^{2} + A\right )} x^{2}}{{\left (c x^{4} + b x^{2} + a\right )}^{2}} \,d x } \]

input
integrate(x^2*(B*x^2+A)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")
 
output
1/2*((B*b - 2*A*c)*x^3 + (2*B*a - A*b)*x)/((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 
 4*a^2*c + (b^3 - 4*a*b*c)*x^2) - 1/2*integrate(-((B*b - 2*A*c)*x^2 - 2*B* 
a + A*b)/(c*x^4 + b*x^2 + a), x)/(b^2 - 4*a*c)
 
3.2.20.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3776 vs. \(2 (234) = 468\).

Time = 1.14 (sec) , antiderivative size = 3776, normalized size of antiderivative = 13.68 \[ \int \frac {x^2 \left (A+B x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

input
integrate(x^2*(B*x^2+A)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")
 
output
1/2*(B*b*x^3 - 2*A*c*x^3 + 2*B*a*x - A*b*x)/((c*x^4 + b*x^2 + a)*(b^2 - 4* 
a*c)) + 1/16*(2*(2*b^2*c^3 - 8*a*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c 
+ sqrt(b^2 - 4*a*c)*c)*b^2*c + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt 
(b^2 - 4*a*c)*c)*a*c^2 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 
 4*a*c)*c)*b*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)* 
c)*c^3 - 2*(b^2 - 4*a*c)*c^3)*(b^2 - 4*a*c)^2*A - (2*b^3*c^2 - 8*a*b*c^3 - 
 sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3 + 4*sqrt(2) 
*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c + 2*sqrt(2)*sqrt( 
b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c - sqrt(2)*sqrt(b^2 - 4* 
a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b*c^2 - 2*(b^2 - 4*a*c)*b*c^2)*(b^2 - 
 4*a*c)^2*B + 2*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^5*c - 8*sqrt(2) 
*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c^2 - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 
 - 4*a*c)*c)*b^4*c^2 - 2*b^5*c^2 + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c) 
*c)*a^2*b*c^3 + 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^3 + sqrt 
(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c^3 + 16*a*b^3*c^3 - 4*sqrt(2)*sqr 
t(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^4 - 32*a^2*b*c^4 + 2*(b^2 - 4*a*c)*b^3* 
c^2 - 8*(b^2 - 4*a*c)*a*b*c^3)*A*abs(b^2 - 4*a*c) - 4*(sqrt(2)*sqrt(b*c + 
sqrt(b^2 - 4*a*c)*c)*a*b^4*c - 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a 
^2*b^2*c^2 - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c^2 - 2*a*b^4 
*c^2 + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*c^3 + 8*sqrt(2)*s...
 
3.2.20.9 Mupad [B] (verification not implemented)

Time = 10.41 (sec) , antiderivative size = 9444, normalized size of antiderivative = 34.22 \[ \int \frac {x^2 \left (A+B x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

input
int((x^2*(A + B*x^2))/(a + b*x^2 + c*x^4)^2,x)
 
output
((x*(A*b - 2*B*a))/(2*(4*a*c - b^2)) + (x^3*(2*A*c - B*b))/(2*(4*a*c - b^2 
)))/(a + b*x^2 + c*x^4) - atan(((((16*A*b^7*c^2 + 2048*B*a^4*c^5 - 192*A*a 
*b^5*c^3 - 1024*A*a^3*b*c^5 - 32*B*a*b^6*c^2 + 768*A*a^2*b^3*c^4 + 384*B*a 
^2*b^4*c^3 - 1536*B*a^3*b^2*c^4)/(8*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 1 
2*a*b^4*c)) - (x*(-(B^2*a*b^9 - B^2*a*(-(4*a*c - b^2)^9)^(1/2) + A^2*b^9*c 
 + A^2*c*(-(4*a*c - b^2)^9)^(1/2) - 96*A^2*a^2*b^5*c^3 + 512*A^2*a^3*b^3*c 
^4 - 96*B^2*a^3*b^5*c^2 + 512*B^2*a^4*b^3*c^3 + 1024*A*B*a^5*c^5 - 768*A^2 
*a^4*b*c^5 - 768*B^2*a^5*b*c^4 + 128*A*B*a^2*b^6*c^2 - 384*A*B*a^3*b^4*c^3 
 - 12*A*B*a*b^8*c)/(32*(4096*a^7*c^7 - 24*a^2*b^10*c^2 + 240*a^3*b^8*c^3 - 
 1280*a^4*b^6*c^4 + 3840*a^5*b^4*c^5 - 6144*a^6*b^2*c^6 + a*b^12*c)))^(1/2 
)*(16*b^7*c^2 - 192*a*b^5*c^3 - 1024*a^3*b*c^5 + 768*a^2*b^3*c^4))/(2*(b^4 
 + 16*a^2*c^2 - 8*a*b^2*c)))*(-(B^2*a*b^9 - B^2*a*(-(4*a*c - b^2)^9)^(1/2) 
 + A^2*b^9*c + A^2*c*(-(4*a*c - b^2)^9)^(1/2) - 96*A^2*a^2*b^5*c^3 + 512*A 
^2*a^3*b^3*c^4 - 96*B^2*a^3*b^5*c^2 + 512*B^2*a^4*b^3*c^3 + 1024*A*B*a^5*c 
^5 - 768*A^2*a^4*b*c^5 - 768*B^2*a^5*b*c^4 + 128*A*B*a^2*b^6*c^2 - 384*A*B 
*a^3*b^4*c^3 - 12*A*B*a*b^8*c)/(32*(4096*a^7*c^7 - 24*a^2*b^10*c^2 + 240*a 
^3*b^8*c^3 - 1280*a^4*b^6*c^4 + 3840*a^5*b^4*c^5 - 6144*a^6*b^2*c^6 + a*b^ 
12*c)))^(1/2) - (x*(B^2*b^4*c - 8*A^2*a*c^4 + 10*A^2*b^2*c^3 + 8*B^2*a^2*c 
^3 - 6*A*B*b^3*c^2 + 2*B^2*a*b^2*c^2 - 8*A*B*a*b*c^3))/(2*(b^4 + 16*a^2*c^ 
2 - 8*a*b^2*c)))*(-(B^2*a*b^9 - B^2*a*(-(4*a*c - b^2)^9)^(1/2) + A^2*b^...